
File Handling 3: File Handles
by Brian Long

A file handle is an integer num-
ber. Its meaning is not relevant

for programmers other than to say
that a value of -1 means that your
file didn’t open because something
went wrong. We are advised
usually not to refer to literal values
like -1, but instead to use constants.
When programming for 16-bit
Windows in C and C++ there is a
constant defined which is called
hFile_Error and has a value of -1.
Unfortunately this is one of the few
items which has no equivalent defi-
nition in Delphi 1. Delphi 2 gives us
both hFile_Error and the new
Win32 constant for -1, which is
Invalid_Handle_Value.

Apparently, a file handle is what
Microsoft call a ‘magic cookie,’
meaning you can use it to refer to a
file without understanding its
value. Historically in DOS (and I
think this is still the case in
Windows 3.1x, but am unaware of
what goes on in Win32) each pro-
gram has an array of 20 bytes
(though this number can be in-
creased) called a Job File Table
(JFT). A file handle is an index into
your JFT. Each JFT entry was itself
an index into DOS’s System File
Table (SFT), whose size is dictated
by the FILES= statement in
CONFIG.SYS. Each SFT entry
contains information about an
open file including a file name, file
position, file size and date and time
stamps.

So, in short, a file handle is a
number. Remember that we can
find a file variable’s file handle by
using TFileRec(FileVar).Handle or
TTextRec(TextVar).Handle. Concep-
tually you could consider opera-
tions using a file handle to be quite
similar to operations on a file of
byte; however, file handle opera-
tions don’t raise exceptions. Also,
you can write data blocks greater
than 64Kb to a file via a file handle.
Delphi 1 file variables can’t deal
with data blocks over 64Kb in size.
The file handle support routines in
Delphi 1 and 2 are listed in Table 1.

File Handle Routines
➤ SysUtils unit:
FileClose Closes a file. Synonym for _lclose (1.0x), CloseHandle (2.0).
FileCreate Creates a new file.
FileGetDate Replaces GetFTime to get file modification time/date.

Used with FileDateToDateTime.
FileOpen Opens existing file in mode specified by file open mode

constants.
FileRead Reads data from a file. Synonym for _hread and ReadFile.
FileSeek Moves file pointer position. Synonym for _llseek or

SetFilePointer.
FileSetDate Replaces SetFTime to set file modification time/date. Used

with DateTimeToFileDate.
FileWrite Writes data to a file. Synonym for _hwrite and WriteFile.

Windows File Handle Routines
➤ WinProcs unit (Delphi 1 and Borland Pascal):
_hread Like _lread but handles blocks over 64Kb. Not predefined

in Delphi.
_hwrite Like _lwrite but handles blocks over 64Kb. Not predefined

in Delphi.
_lclose Closes a file.
_lcreat Creates or opens a file.
_llseek Repositions the file pointer.
_lopen Opens a file.
_lread Read data from a file.
_lwrite Writes data to a file.
OpenFile Creates, opens, reopens or deletes a file.
SetHandleCount Changes the number of file handles available to a task.

The Controls unit uses this API to set 255 file handles.

➤ Windows unit (Delphi 2):
_hread For compatibility with 16-bit Windows.
_hwrite For compatibility with 16-bit Windows.
_lclose For compatibility with 16-bit Windows.
_lcreat For compatibility with 16-bit Windows.
_llseek For compatibility with 16-bit Windows.
_lopen For compatibility with 16-bit Windows.
_lread For compatibility with 16-bit Windows.
_lwrite For compatibility with 16-bit Windows.
CloseHandle Close file.
CreateFile Create/open/truncate a file.
FlushFileBuffers Write files to disk.
GetFileSize Find size of file.
LockFile Lock area of a file.
LockFileEx Not implemented in Windows 95.
OpenFile For compatibility with 16-bit Windows.
ReadFile Read data from a file.
ReadFileEx Not implemented in Windows 95.
SetEndOfFile Sets the current file position as the end of file.
SetFilePointer Repositions the file pointer.
SetHandleCount For compatibility with 16-bit Windows.
UnlockFile Unlock area of file.
UnlockFileEx Not implemented in Windows 95.
WriteFile Writes data to a file.
WriteFileEx Not implemented in Windows 95.

➤ Table 1: File handle support routines in Delphi 1 and 2

April 1996 The Delphi Magazine 23

If you are still working with
Delphi version 1.00 or 1.01 (your
DELPHI.EXE time stamp won’t be
8:02) then your Help page for
FileOpen erroneously says that it is
an internal routine. So does
FileCreate’s page, but at least that
describes the function. These mis-
takes were corrected in the 1.02
maintenance release, but for those
without that version, here is the
text (with a spelling correction):

“FileOpen opens the specified file
using specified access mode. The
access mode is constructed by Or-ing
one of the fmOpenXXX constants with
one of the fmShareXXX constants. If
the return value is positive, the func-
tion was successful and the value is
the file handle for the opened file. If
the return value is negative, an error
occurred and the value is a negative
DOS error code.”

Note that the return value for
FileOpen (and indeed for some
other routines) isn’t necessarily -1
for an error condition: it could be
any of a range of negative numbers.
This is in contrast to Delphi 2
where an error does yield -1 (or
hFile_Error) and additional error
information can be gleaned by
using the GetLastError API. The
reason for the difference is that
Delphi 1 implements FileOpen,
among other routines, by calling
DOS interrupts. Calling interrupts
is taboo in 32-bit and so these
routines are now implemented by
calling appropriate Win32 APIs
(ie CreateFile with appropriate
parameters).

The likely DOS error values for
the 16-bit FileOpen and FileCreate
are shown in Table 2.

If you have been paying attention
to what functionality was available
for file variables, you may feel the
16-bit file handle support is a bit
limited. There is no direct support
for finding a file’s size, or the
current file position. But fear not,
because we can still get hold of this

information. The routine FileSeek
(which is implemented by a call to
_llseek in Win16 or SetFilePointer
in Win32) can move to any place in
your file and then return that file
position. We specify where to
move to by giving it an offset (a
number of bytes) and a symbol
indicating an origin to seek from
which can mean from the begin-
ning of the file (0), from the current
position (1) or from the end of the
file (2). The symbols have different
constant names, depending which
function you are calling, as shown
in Table 3.

To find our current position, we
can seek zero bytes from the cur-
rent position and we will be told
how far through the file we are. To
find the file size, we need to do a
similar thing, but save the current
position, then seek zero bytes from
the end of the file, recording the
position, which will be the file size.
To get back to where we were we
can seek from the beginning of the
file, specifying our saved position
as the number of bytes.

Words Of Warning
When dealing with files, the data
types used for storage need to be
thought about if portability of data
files between 16-bit and 32-bit
Delphi programs is to be main-
tained. If integral values are being
stored, remember to use Smallint
or Word, rather than Integer or
Cardinal for signed and unsigned
16-bit numbers respectively.
Delphi 2, like Delphi 1, interprets
Smallint and Word as 16-bit values,
whereas Integer and Cardinal
become 32-bit values in Delphi 2.

Records get laid out in memory
differently by default. Instead of
each field immediately following
the previous one, Delphi 2 ensures
each one starts at a suitable bound-
ary (dependent on the field size)
for efficient access. This means
there may be spare bytes in your

records which will cause the
record size to increase and break
programs that read data from
Delphi 1 days. To prevent prob-
lems, precede the keyword record
with the keyword packed (this used
to be ineffective, but it is now
significant), as shown in Listing 1.

Also, string data needs to be
considered carefully. If you have
16-bit programs writing data out to
non-text files which include
strings, ensure you either disable
huge string support for the areas of
your Delphi 2 program that deal
with the file I/O, or alternatively
explicitly declare your strings as
short strings (eg S: String[255] –
the length limit in square brackets
makes a Delphi 1 compatible short
string).

Another gotcha with strings in
Delphi 2 comes up with FileWrite.
The second parameter of FileWrite
is an untyped variable: you pass
some data and it takes the address
of that data and passes it through.
In Delphi 1 you can pass a string in,
maybe something like the example
in Listing 2.

Origin Value FileSeek Constant _llseek Constant SetFilePointer Constant
Beginning of file 0 soFromBeginning Seek_Set File_Begin
Current position 1 soFromCurrent Seek_Cur File_Current
End of file 2 soFromEnd Seek_End File_End

➤ Table 3: File seeking constants

Value Meaning
-2 File not found
-3 Path not found
-4 Too many open files
-5 Access denied
-12 Invalid access mode

➤ Table 2: DOS error
values for 16-bit
FileOpen and FileCreate

type
 TUnsafeRecord = record
 Ch: Char;
 L: Longint;
 B: Boolean;
 end; { 12 bytes in Delphi 2,
 6 bytes in Delphi 1 }
 TSafeRecord = packed record
 Ch: Char;
 L: Longint;
 B: Boolean;
 end; { 6 bytes in Delphi 1 & 2}

➤ Listing 1

24 The Delphi Magazine Issue 8

This writes a whole string vari-
able out, a 256 byte block of data.
Because of the use of a var parame-
ter, things turn pear-shaped in
Delphi 2. The new huge strings are
implemented via an implicit
pointer. A string variable is really a
pointer to the string data. If you try
and pass a huge string to FileWrite,
it passes the address of the pointer
and all you get in the file is the value
of that pointer plus a load of gar-
bage. Instead, you need to pass
S[1], so the address of the first
character would be passed.

If a Delphi 1 application wrote a
string out as above, a Delphi 2 huge
string program would need to be
fiddly to match its operation and
maintain the file structure and
layout. Strings are managed by
dynamic allocation of memory,
which is increased when a string is
written to using normal string
operations, but not using a
memory write operation as

FileRead does. Bearing this in mind,
we could use code like that in
Listing 3.

The first SetLength in the writing
section makes sure there are
definitely 255 valid bytes which
FileWrite can write to the file. If
there were only, say, 5, then we
would risk an access violation. The
second one restores the string to
its old length. The first SetLength in
the reading section causes enough
memory to be available to write the
255 characters to and then the
second one ensures that the string
thinks of itself with the correct
length. However, the string storage
here is inefficient: 256 bytes for
each string. Let’s change the
Delphi 1 writing and reading code
to this:

FileWrite(Handle, S, Length(S) + 1);

...

FileRead(Handle, S[0], 1);

FileRead(Handle, S[1], Length(S));

The Delphi 2 reading code now
turns into:

Len := Length(S);
FileWrite(Handle, Len, 1);
FileWrite(Handle, S[1],
 Length(S));
...
FileRead(Handle, Len, 1);
SetLength(S, Len);
FileRead(Handle, S[1], Len);

Sample Implementations
To do a bit of a recap of what has
been covered so far in these arti-
cles I have implemented a reason-
ably simple program that uses a
structured data file. To see the
different options available for file
handling, the program will be first
written using a typed variable, and
then with an untyped file variable,
and yet again with file handles.

The program is not particularly
adventurous, for simplicity of read-
ing: it allows storage of records of
information consisting of a name
and a date of birth. The file will not
exist to start with and so the
program needs to know how to
create it and must obviously sup-
port adding records. It will also
attempt to handle the various error
situations which may arise, using
the natural error mechanism of the
file system used (ie exceptions for
file variables).

The program (NAMES1.DPR) is
split over two units. The first is the
main form unit, NAMES1U.PAS, and
implements the user interface. I
won’t go into what it does in any
detail, though I’ll mention that it
spends some time ensuring that
clipboard-oriented menu items
and speed buttons are enabled and
disabled when appropriate, and
the same for navigational menu
items and speed buttons. Addition-
ally it implements the functionality
behind those buttons/menus.
Figure 1 shows the program.

The important part of the code is
left to the second unit (called
NAMES1U2.PAS), which has noth-
ing to do with the user interface.
This unit implements a class to rep-
resent a data file and also defines
the data record. The plan is that
only this second unit will need ad-
justing for the different file types.

var
 Handle: Integer;
 S: String;
 Len: Byte;
...
Handle := FileCreate(’c:\delme.dat’);
FileClose(Handle);
...
Handle := FileOpen(’c:\delme.dat’, fmOpenReadWrite or fmShareDenyNone);
S := Edit1.Text;
Len := Length(S);
FileWrite(Handle, Len, SizeOf(Byte));
SetLength(S, 255);
FileWrite(Handle, S[1], 255);
SetLength(S, Len);
...
FileSeek(Handle, 0, soFromBeginning);
FileRead(Handle, Len, SizeOf(Byte));
SetLength(S, 255);
FileRead(Handle, S[1], 255);
SetLength(S, Len);
FileClose(Handle);
Caption := S;

➤ Listing 3

var
 Handle: Integer;
 S: String;
...
Handle := FileCreate(’c:\delme.dat’);
FileClose(Handle);
...
Handle := FileOpen(’c:\delme.dat’, fmOpenReadWrite or fmShareDenyNone);
S := Edit1.Text;
FileWrite(Handle, S, SizeOf(S));
...
FileSeek(Handle, 0, soFromBeginning);
FileRead(Handle, S, SizeOf(S));
FileClose(Handle);
Caption := S;

➤ Listing 2

April 1996 The Delphi Magazine 25

The TDataFile class interface will
remain static, but the implementa-
tion will change, as you can see in
Listing 4.

There are seven principal meth-
ods of interest (mostly property
access methods) which all deal
with the file variable. Some are
fairly simplistic, like GetCount
which returns the number of re-
cords in the file and GetCurrent
which reports the position in the
file. You can see from Listing 5 that
they are simple wrappers around
FileSize and FilePos. The code in
SetCurrent is almost only a call to
Seek, but there is a check to ensure
that the caller is not requesting a
position past the end of the file.

The more interesting methods
are the constructor and destruc-
tor, and also the Records property
access methods GetRecord and
SetRecord.

The constructor changes to the
directory where the program’s EXE
file resides and sets FileMode up for
normal sharing. If there is no data
file found an attempt is made to
make one, followed by the normal
call to Reset which should open the
file in sharing mode. If there is a
problem, for example another
program already has the file open
in a mode that excludes us from
writing, then an exception is raised
and caught. Before re-raising the
error with a custom message, code
executes to ensure the file is defi-
nitely shut, taking advantage of the
file variable structure record
TFileRec and one of the file open
mode constants, fmInOut.

The destructor ensures the file is
closed before letting the object de-
stroy itself. If you try and close a file
that is not open, you get an excep-
tion. Some would say that these
days you should be in the mindset
of exception handling and just
close the file, but trap an exception
if one occurs. However, doing it the
way I’ve shown demonstrates a use
for the Mode field in the TFileRec
structure.

GetRecord retrieves a specified
record by positioning the file
pointer and using Read. If Read
yields any kind of problem an Index
out of bounds exception is raised to
suggest that maybe an invalid

record was requested. SetRecord is
less trivial – it tries to lock a record
in the file so it can exclusively write
a record without fear of conflict
with anyone else. If the lock cannot
be placed an I/O exception is
raised, otherwise the record is
written and the lock is removed.
The locking unit NETLOCK.PAS is a
slightly updated version of the file
supplied with the last issue (it has
conditional compilation for Win32)
and is included on the disk of
course.

The reason for including the
TDataRec((@DataRec)^) element in
the call to write is simply to show
how you can get around the normal
restrictions on const parameters,
ie that they can’t be passed as var
parameters. Normally I wouldn’t
write such an expression. It would

➤ Figure 1

be clearer to declare a local vari-
able of type TDataRec, assign
DataRec to it and pass that instead.

Version 2
When rewriting this for untyped
files (see the project NAMES2.DPR
on the disk), there are very few
changes to make (four in total).
First the definition of FDataFile
needs to change to be:

FDataFile: File;

To give the untyped file a record
size, we modify the call to Reset in
the constructor:

Reset(FDataFile,
 SizeOf(TDataRec));

Finally, GetRecord and SetRecord

type
 TDataRec = packed record
 { The form’s edit box has its MaxLength property set to 30 }
 Name: String[30];
 { Only interested in the date portion of this date/time value }
 DOB: TDateTime;
 end;
 TDataFile = class
 private
 FDataFile: File of TDataRec;
 protected
 function GetCount: Longint;
 function GetCurrent: Longint;
 function GetRecord(Index: Longint): TDataRec;
 procedure SetCurrent(RecNo: Longint);
 procedure SetRecord(Index: Longint; const DataRec: TDataRec);
 public
 constructor Create;
 destructor Destroy; override;
 property Count: Longint read GetCount;
 property Current: Longint
 read GetCurrent write SetCurrent;
 property Records[Index: Longint]: TDataRec
 read GetRecord write SetRecord; default;
 end;

➤ Listing 4

26 The Delphi Magazine Issue 8

must use BlockRead and BlockWrite
instead of Read and Write:

BlockRead(FDataFile, Result,
 1, Count);
...
BlockWrite(FDataFile,
 TDataRec((@DataRec)^),
 1, Count);

The fourth parameter is an op-
tional Word variable which is used
to detect problems. It returns the
number of records (since we set a
record size) read or written. If it is
less than we requested, ie if it is
zero, then there was a file error.
Note that the third and fourth
parameters of BlockRead and
BlockWrite are both of Word type in
Delphi 1 (ie range 0..65535), but are
Integer types in Delphi 2 (ie range
-2Gb..2Gb-1). This change is to ca-
ter for the 32-bit file system which
deals in 32-bit values. In my pro-
gram they are defined as Cardinal,
so they will be 16-bit in Delphi 1 and
32-bit in Delphi 2.

Version 3
The version for file handles
(NAMES3.DPR) has a few more in-
volved changes in NAMES3U2.PAS.
FDataFile is now defined as an
Integer. The constructor contains
no exception handling, as file
handle routines don’t generate
exceptions, although it does gener-
ate some exceptions if there is a
problem.

In order to cater for the lack of a
FileSize routine I implemented one
using the logic described earlier.
This isn’t necessary in Win32, since
it has its own GetFileSize routine.
There is conditional compilation to
call the relevant one in GetCount.
GetRecord and SetRecord are modi-
fied to use FileRead and FileWrite,
but also SetRecord uses the
LockFileArea call instead of
LockFileVar. As an example of the
changes, SetCurrent is shown in
Listing 6.

More Routines
We will not be looking at the
Windows file handling APIs as they
tend to vary between Windows
version. However, I have listed
them in the various tables so you

uses
 Forms, NetLock, Consts, Classes;
const
 FileName = ’DataFile.Dat’;

constructor TDataFile.Create;
begin
 { Make current directory where EXE file is, just in case }
 ChDir(ExtractFilePath(Application.ExeName));
 AssignFile(FDataFile, FileName);
 FileMode := fmOpenReadWrite or fmShareDenyNone;
 try
 { Make file if it ain’t there }
 if not FileExists(FileName) then
 Rewrite(FDataFile);
 Reset(FDataFile);
 except
 on E: EInOutError do begin
 { In case Rewrite succeeded but Reset failed }
 if TFileRec(FDataFile).Mode = fmInOut then
 CloseFile(FDataFile);
 { Customise the exception and re-raise it }
 E.Message := ’Failed to create or open ’ + FileName;
 raise;
 end;
 end;
end;

destructor TDataFile.Destroy;
begin
 if TFileRec(FDataFile).Mode = fmInOut then
 CloseFile(FDataFile);
 inherited Destroy;
end;

function TDataFile.GetCount: Longint;
begin
 Result := FileSize(FDataFile);
end;

function TDataFile.GetCurrent: Longint;
begin
 Result := FilePos(FDataFile);
end;

function TDataFile.GetRecord(Index: Longint): TDataRec;
begin
 try
 Current := Index;
 Read(FDataFile, Result);
 { Go back to the beginning of the read record }
 Current := Index;
 except
 raise EListError.CreateRes(SListIndexError);
 end;
end;

procedure TDataFile.SetCurrent(RecNo: Longint);
begin
 { Anything past EOF is considered EOF }
 if RecNo > Count then
 RecNo := Count;
 Seek(FDataFile, RecNo);
end;

procedure TDataFile.SetRecord(Index: Longint; const DataRec: TDataRec);
var X: EInOutError;
begin
 Current := Index;
 if not LockFileVar(FDataFile, Current, False) then begin
 X := EInOutError.Create(’Cannot lock file’);
 { Set up a file access denied type exception }
 X.ErrorCode := 5;
 raise X;
 end;
 try
 { DataRec is passed as a const (pass by reference, but }
 { not allowed to be treated/passed as a var parameter). }
 { We can get around this by dereferencing its }
 { address with an appropriate typecast }
 Write(FDataFile, TDataRec((@DataRec)^));
 { Go back to the beginning of the written record }
 Current := Index;
 finally
 LockFileVar(FDataFile, Current, False);
 end;
end;

➤ Listing 5

April 1996 The Delphi Magazine 27

can look up their details in the
online help.

To give you even more food for
thought, Tables 4, 5 and 6 list a
plethora of file-oriented bits and
pieces, including miscellaneous
routines, directory and disk
routines and also constants and
data structures.

In the next article we will delve
into streaming.

Brian Long is an independent
consultant and trainer specialising
in Delphi. His email address is
76004.3437@compuserve.com

Copyright ©1995 Brian Long
All rights reserved.

procedure TDataFile.SetCurrent(
 RecNo: Longint);
begin
 { Anything past EOF is
 considered EOF }
 if RecNo > Count then
 RecNo := Count;
 FileSeek(FDataFile,
 RecNo * SizeOf(TDataRec),
 soFromBeginning);
end;

➤ Listing 6

System unit (Delphi and Borland Pascal):
IOResult Returns value of last I/O error if I/O checking is disabled.

SysUtils unit:
ChangeFileExt Given a file name, this returns a string with the extension

changed.
DateTimeToFileDate Replaces PackDate to turn Delphi date/time into DOS

date/time. Used with FileSetDate.
DeleteFile Deletes a file.
ExpandFileName Returns absolute file specification. Replaces FileExpand,

FExpand.
ExtractFileExt Given a full file specification, returns the extension.

Replaces FileSplit, FSplit.
ExtractFileName Given a full file specification, returns the name including

extension. Replaces FileSplit, FSplit.
ExtractFilePath Given a full file specification, returns the path.

Replaces FileSplit, FSplit.
FileAge Used with FileDateToDateTime returns age of file.
FileDateToDateTime Replaces UnpackDate to turn DOS date/time into Delphi

date/time for FileAge, FileGetDate, TSearchRec.
FileExists Returns True if file exists.
FileGetAttr Replaces GetFAttr for finding file attributes.
FileSearch Locates a file on a given path.
FileSetAttr Replaces SetFAttr for setting file attributes.
FindClose Terminates a FindFirst, FindNext sequence.
FindFirst Finds first occurrence of a file specification

(can handle wildcards).
FindNext Finds next occurrence of a file specification

(can handle wildcards).
RenameFile Renames a file.

WinDos unit (Delphi 1 and Borland Pascal):
FileExpand Returns absolute file specification. Delphi introduces

ExpandFileName.
FileSearch Locates a file on a given path.
FileSplit Splits a file specification into path, directory, name

and extension. Delphi introduces ExtractFileExt,
ExtractFileName and ExtractFilePath.

FindFirst Finds first occurrence of a file specification (handles wildcards).
FindNext Finds next occurrence of a file specification (handles wildcards).
PackTime Became DateTimeToFileDate. Used with SetFTime to turn

DOS date/time to DateTime or TDateTime.
UnpackTime Became FileDateToDateTime. Used with GetFTime,

TSearchRec, SearchRec to turn DateTime or TDateTime
into DOS date/time.

Windows unit (Delphi 2):
DeleteFile Deletes a file.
CopyFile Copies an existing file to a new file.
FindClose Terminates a FindFirstFile, FindNextFile sequence.

Note the same name as the System unit procedure.
FindFirstFile Finds first occurrence of a file specification (handles wildcards).
FindNextFile Finds next occurrence of a file specification (handles wildcards).
GetBinaryType Identifies application type (eg Win16, Win32, DOS, OS/2).
GetFileAttributes Gets attributes of a file or directory.
GetFileTime Gets file time stamp.
GetFullPathName Returns full path and file name of a file (even an 8.3 file name).
GetShortPathName Returns the short path form of the specified input path.
MoveFile Renames a file or directory.
MoveFileEx Not implemented in Windows 95.
SearchPath Searches for a specified file.
SetFileAttributes Sets file attributes.
SetFileTime Sets file timestamp.

➤ Table 4: Miscellaneous routines

28 The Delphi Magazine Issue 8

System unit (Delphi and Borland Pascal):
File Untyped file type.
File of **** Typed file type, eg File of Double.
FileMode Affects how Reset opens a file.
Text Text file type.
TextFile Delphi substitute for Text to avoid

scoping problems.

SysUtils unit:
fa**** Used by FileSetAttr,

FileGetAttr, TSearchRec,
eg faReadOnly.

fm**** File open mode constants,
used by FileMode variable, eg
fmOpenReadWrite.

fm**** File mode constants, used by TTextRec
and TFileRec, eg fmClosed.

TFileName Generic file name type.
TFileRec Non-text file internal representation.
TSearchRec Search record used by FindFirst,

FindNext.
TTextRec Text file internal representation.

Classes unit:
soFrom**** Seek origin constants for FileSeek

and TStream.Seek eg soFromEnd.

WinTypes unit (Delphi 1):
Seek_**** Seek origin constants for _llseek,

eg Seek_End.

Windows unit (Delphi 2):
File_**** Seek origin constants for

SetFilePointer and _llseek,
eg File_End.

WinDos unit (Delphi 1 and Borland Pascal):
DosError Where DOS file errors are reported.
fa**** File attribute constants, used by

GetFAttr, SetFAttr, TSearchRec,
eg faReadOnly.

fc**** File component constants, used by
FileSplit, eg fcDirectory.

fm**** File open mode constants and file mode
constants, used by TTextRec and
TFileRec, eg fmClosed.

fs**** File name component string lengths,
eg fsPathName, fsExtension.

TDateTime Used by GetFTime, SetFTime,
PackTime, UnpackTime.

TFileRec Non-text file internal representation.
TSearchRec Search record used by FindFirst,

FindNext.
TTextRec Text file internal representation.

For more information on all the routines,
types, variables and constants listed in
these tables, check Delphi’s online help

➤ Table 6: File types, variables and constants

System unit (Delphi and Borland Pascal):
ChDir Changes current directory.

Replaces CreateDir.
GetDir Gets current directory.

Replaces GetCurDir.
MkDir Makes new directory.

Replaces CreateDir.
RmDir Removes a directory.

Replaces RemoveDir.

SysUtils unit:
DiskFree Returns free disk space.
DiskSize Returns disk size.

WinProcs unit (Delphi 1 and Borland Pascal):
GetDriveType Determines if a drive is removable,

fixed or remote.
GetSystemDirectory Retrieves Windows system directory

path.
GetTempDrive Returns a drive letter where temporary

files may be stored.
GetTempFileName Creates a temporary file.
GetWindowsDirectory Retrieves Windows directory path.

WinDos unit (Delphi 1 and Borland Pascal):
DiskFree Returns free disk space.
DiskSize Returns disk size.
CreateDir Changes current directory.

Delphi introduces MkDir.

GetCurDir Gets current directory.
Delphi introduces GetDir.

RemoveDir Makes new directory.
Delphi introduces RmDir.

SetCurDir Removes a directory.
Delphi introduces ChDir.

Windows unit (Delphi 2):
CreateDirectory Makes a new directory.
CreateDirectoryEx Makes a new directory with the

attributes of another directory.
GetCurrentDirectory Gets current directory.
GetDiskFreeSpace Gives information about free space

on disk.
GetDriveType Identifies drive type.
GetLogicalDrives Identifies currently available drives.
GetLogicalDriveStrings Returns names of currently available

drives.
GetSystemDirectory Retrieves Windows system directory

path.
GetTempFileName Creates a temporary file.
GetTempPath Returns a path where temporary files

may be stored.
GetVolumeInformation Gives various information about a file

system and volume.
GetWindowsDirectory Retrieves Windows directory path.
RemoveDirectory Removes a directory.
SetCurrentDirectory Changes current directory.
SetVolumeLabel Changes file system volume label.

➤ Table 5: Directory/disk routines

April 1996 The Delphi Magazine 29

	Words of Warning
	Sample Implementations
	Version 2
	Version 3
	More Routines

